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Kinetic theory and numerical simulations are used to explore the dynamics of a dilute 
gas-solid suspension subject to simple shear flow. The particles experience a Stokes 
drag force and undergo solid-body interparticle collisions. Two qualitatively different 
steady-state behaviours are possible: an ignited state, in which the variance of the 
particle velocity is very large; and a quenched state, in which most of the particles 
follow the local fluid velocity. Theoretical results for the ignited state are obtained by 
perturbing from a Maxwell distribution, while predictions for the quenched state result 
from consideration of the collision of particles that initially move with the fluid. A 
composite theory, which includes effects of collisions driven by both the mean shear 
and the velocity fluctuations, predicts the existence of multiple steady states. Dynamic 
simulations and calculations using the direct-simulation Monte Carlo method confirm 
the result that, for certain volume fractions and shear rates, either the quenched or 
ignited state can be achieved depending on the initial velocity variance. 

Simulations are also performed for particles experiencing a nonlinear drag force. 
Both the theory of rapid granular flow, which neglects drag, and our theory for the 
ignited state with linear drag predict that the particle velocity variance can grow 
without bound as $ + O ,  where $ is the volume fraction. The nonlinear drag force 
eliminates the divergence and leads to a particle velocity variance that will always 
decrease with decreasing volume fraction in the limit $ + 0. 

1. Introduction 
There is an extensive literature on the behaviour of dilute suspensions of solid 

particles in turbulent and laminar flows in situations where solid-body collisions and 
all other particle interactions can be ignored (for example Maxey 1987; Squires & 
Eaton 1990; Alfonso, Gaiian-Calvo & Lasheras 1991). On the other hand, considerable 
study has been devoted to dense rapid granular flows (Savage & Jeffrey 198 1 ; Jenkins 
& Savage 1983; Lun et al. 1984), in which the effects of the fluid phase are neglected. 
The equations of rapid granular flow have been applied to fluidized beds (see, for 
example, Sinclair & Jackson 1989) by adding a mean drag due to the fluid phase to the 
average momentum equation for the particle phase. However, the effect of the gas 
phase on the kinetic energy contained in the particle velocity fluctuations and on the 
particle stress is usually neglected. 

In this paper, we will consider a sheared gas-solid suspension in the absence of 
gravity. The volume fraction of the solid phase will be assumed small. However, it will 
be seen that particle collisions can dramatically alter the behaviour of the suspension 
even when $ < 1. The suspension dynamics are dominated by the drag exerted by the 
fluid and the solid-body collisions between the particles. Hydrodynamic interactions 
may be neglected provided that $ < 1 and St B 1. Here, St = y7v, y is the shear rate, 
and 7, = m/(6npa) is the viscous relaxation time of the particle velocity, where a and 
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m are the radius and mass of the particle, and p is the viscosity of the gas. 
Hydrodynamic interactions will not be considered in this paper, although we 
sometimes present results for values of St that are not asymptotically large. The effects 
of hydrodynamic interactions and large particle volume fractions will be considered in 
Sangani et al. (1995). 

Before embarking on our study of the effects of viscous drag on a rapidly sheared 
gas-solid suspension, it will prove useful to review the theory of rapid granular flow 
which neglects drag forces. The rapid granular flow is considered analogous to a hard- 
sphere gas except that a fraction 1 -e2 of the energy associated with the relative motion 
of two particles along their line of centres is lost when they collide. Here, e is the 
coefficient of restitution. The energy associated with the particle velocity fluctuations 
is determined by a balance of the work done by the mean shear against the effective 
viscosity of the suspension and the energy dissipated during collisions. The collisional 
dissipation is proportional to the 0[( 1 - e2) mT] kinetic energy loss per collision times 
the O($2u2T1’2) rate of collision, where Tis one-third of the mean-square of the particle 
velocity and is referred to as the granular temperature. The shear work is p p  y2, where 
the particle viscosity p p  is obtained from the kinetic theory of gases and is proportional 
to TIi2. 

The particle viscosity arises from the transfer of momentum due to the random 
translation of the particles and from the instantaneous transfer of momentum through 
a distance 2a upon collision of two particles. The former mechanism, referred to as 
kinetic, dominates in the dilute limit while the latter, known as collisional, is larger in 
dense suspensions. The growing particle viscosity induced by the collisional stress at 
high volume fractions causes the temperature to grow with increasing volume fraction 
for volume fractions larger than about 0.2. However, in the dilute limit, the particle 
viscosity and shear work are independent of $ and so the energy balance indicates that 
the granular temperatures grows with decreasing volume fraction and actually diverges 
like $P as q5 + 0. This curious behaviour has not been observed experimentally and the 
physical relevance of the granular theory in this limit has been drawn into question 
(Lun et al. 1984; Campbell 1989, 1990). 

At low volume fractions, the dissipation due to viscous drag becomes more 
important than the dissipation due to inelastic collisions and we consider the effects of 
viscous drag in detail here. For simplicity, we will consider perfectly elastic particles, 
e = 1. To get a qualitative picture of the results, the reader may now examine some of 
the results obtained from numerical simulations which include the viscous drag acting 
on the particles. We have performed both non-equilibrium-molecular-dynamics and 
Monte Carlo simulations. The steady state of the system is achieved and characterized 
by the temperature which in turn depends on the volume fraction, Stokes number and 
the initial velocity variance. The results of the simulations are represented by symbols 
in figure 7 .  The lines in the figure are results of a theory that will be explained later. 

Two kinds of steady state are observed which are characterized by the relative 
magnitudes of two timescales: (i) the viscous relaxation time, r,, which is the time it 
takes a particle to relax back to the local fluid velocity after a collision, and (ii) the 
collision time, 7c, which is the time between successive collisions of a particle. For a 
fixed St that is large compared to 1, we are able to obtained a steady state with large 
velocity variance (compared to (ya)”. This is referred to as an ignited state for which 
r, % re. If the volume fraction is below a critical value which depends on the Stokes 
number, i.e. $ d $,(St), and the initial variance is small enough, the temperature will 
drop to a value which is small compared to (ya)’. We define this as a quenched state 
for which r, 4 re. However, we can attain the ignited state even when $ d $e, if we start 
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with a large enough variance. In other words, there exist multiple steady states for 
$ < $, and the final steady state depends on the initial variance of the particle velocity. 

For a fixed volume fraction, hysteresis in the granular temperature is observed by 
varying the Stokes number as shown in figure 8. There are two critical Stokes numbers, 
StCl and StCz where StCz > St,,. When St 2 Stcz, only the ignited state exists. When the 
Stokes number is decreased to the region St,, < St < Stcz, there exist multiple steady 
states and the final state is determined by the initial velocity variance. For St < Stcl, 
the steady state will be quenched for any initial conditions. StCz varies with $ and 
St,, z 5 independent of volume fraction for $ g 1. 

In the ignited state the momentum transfer due to particle inertia is far more 
important than that in the gas phase. Thus, the stress tensor of the particle phase can 
be obtained from dynamic simulations in a manner analogous to that used for 
molecular gases. Although the stress tensor is anisotropic in general, the particle phase 
behaves like a Newtonian fluid as St +a. The normal stress differences and the shear- 
rate dependence of the particle viscosity become significant for values of St close to 

In the quenched state, there is an O(St3$2) contribution to the effective viscosity of 
the suspension due to the momentum transferred by particle flights following 
occasional shear-induced collisions. There is also an O($) contribution from the 
viscous stress acting on the majority of particles whose velocities are equal to the local 
fluid velocity. 

We first used a non-equilibrium-molecular-dynamic-type method to follow the 
changes in the positions and velocities of N particles in a unit cell with Lees-Edwards 
periodic boundary conditions as they experienced elastic solid-body collisions and a 
Stokes drag force. When using dynamic simulations to simulate the quenched state, 
however, the spatial configuration of the particles in the periodic cell would arrange 
itself such that the particles would miss one another and no further collisions would 
occur. This was an artifact of the periodic boundary conditions. To avoid this 
situation, a more direct numerical construction of the solution to the Boltzmann 
equation was adopted using the Monte Carlo method of Bird (1970). This technique 
follows the evolution of the particles’ velocity distribution function in time without 
requiring a precise specification of particle positions. The results for the ignited state 
from dynamic simulations and the Monte Carlo method were the same. 

It is of interest at this point to ask whether there is any experimental evidence for the 
type of transition observed in our simulations. Although it is not possible to obtain 
dilute sheared suspensions with negligible gravitational effects on Earth, we can 
compare our result qualitatively to turbulent pressure-driven vertical tube flows of 
dilute gas-solid suspensions. In experiments with fine particles, it is observed that the 
particles respond primarily to the gas-phase turbulence (Elghobashi & Abou-Arab 
1983), while more massive particles experience velocity fluctuations induced by 
interparticle collisions (Louge, Mastorakos & Jenkins 199 1). These observations are 
consistent with our results showing that an ignited state occurs for particles with higher 
Stokes numbers. While these experiments contain a number of complicating factors, 
including gas-phase turbulence as well as the possibility of gravitationally induced 
instabilities, it is clear from the work of Louge et al. (1991) that shear plays a dominant 
role at least for the larger particles. 

Quenched and ignited states have also been predicted for a somewhat different 
physical setting (Goldreich & Tremain 1978). The particle velocities in Keplerian shear 
of a planetary ring are determined by shear-induced particle collisions as well as 
gravitational and centrifugal forces. (Drag forces are negligible.) If the orbital velocity 

% I .  
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is much less than the collision frequency, then a particle will attain a new orbit before 
it has an opportunity to collide and transmit its momentum to another particle and one 
obtains a state with a low velocity variance. In the opposite limit, one obtains a highly 
agitated state. 

In the following sections, we will explain the simulation results summarized above 
using a kinetic theory. The background for the kinetic theory is introduced briefly in 
$2. Instead of solving the nonlinear Boltzmann equation directly, a moment method is 
adopted in $ 3 .  Based on an assumed functional form (second-order Hermite 
polynomials) for the velocity distribution function, the rate of change of the second 
moments due to collisions can be expressed in terms of second moments only. The 
collisions are driven by the fluctuations of the particle velocity with respect to the 
mean (variance-driven collisions) and by the difference in the mean velocities 
corresponding to the positions of the two particles (shear-induced collisions). Two 
stable solutions for the temperature are found. One corresponds to the ignited state 
and the other is the quenched state with zero variance. Neglecting shear-induced 
collisions leads to a prediction that every particle will move with the local fluid velocity 
in the quenched state. We study the effects of shear-induced collisions on the quenched 
state in $4. In $5, a theory which includes both variance-driven and shear-induced 
collisions in the collision integral is used to derive a St,$, diagram which displays the 
regions of ignited, quenched, and multiple steady states observed in the simulations. In 
$6, the effects of nonlinear drag on the quenched-ignited transition are considered. The 
results show that the divergence of granular temperature in the limit $ + 0 is eliminated 
due to nonlinear drag. 

2. Background for the kinetic theory 

homogeneous simple shear flow with the fluid velocity u given by 
We shall consider a dilute suspension of solid particles in a gas undergoing a steady 

u = Ger, G ,  = ySizSju, (2.1) 

where x and y correspond to the flow and gradient directions respectively. The state of 
the dilute gas-solid suspension is characterized by the one-particle distribution 
function F(t,r, u) where v is the particle velocity. The normalization of the 
distribution is n = JFd3v, where n = n(t, r) is the number density. The average, (u>, 
of a function Y = Y(u) is given by 

For example, the mean mass density ps is mn, the mean of the particle velocity is ( u ) ,  
and the particle temperature is (C2)/3. It is convenient to introduce the fluctuating 
velocity C, which is defined as the velocity relative to the mean, C = u -  (8) ; through 
( u ) ,  it is a function of Y. The distribution function depends on the fluctuating velocity 
C rather than u and is defined by jFd3v = s fd3C. If the suspension is nearly 
homogeneous and its behaviour varies slowly with time, the velocity distribution 
function can be described by a Boltzmann equation (Chapman & Cowling 1970) of the 
form 

-- a a a c f  c:-(u)+-.(Vf) = - 
aC ar ac at . 
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Equation (2.3) states that, at steady state, the collisional rate of change of the 
distribution function for the fluctuating velocity is balanced by the rate of change of 
f(C) due to particle motion with respect to the mean velocity field (streaming) and the 
rate of change off( C) due to external forces acting on the particles. In the present 
application, the external force is viscous drag and so it is important to write the 
acceleration i, inside the divergence operator. 

In the absence of the gravitational forces, the equation of motion for the particle will 
be approximated as 

It should be noted that the primary effect of gravitational forces would be to change 
the mean particle velocity. Velocity fluctuations are induced by gravity only in 
polydisperse suspensions (Kumaran, Tsao & Koch 1994) or through hydrodynamic 
interactions (Koch 1990). The velocity fluctuations produced by both these mechanisms 
have been found to be weak compared with the fluctuations induced by shearing. 

In (2.4), we have neglected the history dependence of the drag force. The ratio of the 
Basset history term to the steady Stokes drag is O(a/(vt)l/'), where v = p/pf is the 
kinematic viscosity of the gas and t is the timescale over which changes in particle 
velocity occur. Taking t to be the collisional time 7, = q-1/(C2)1'2, the history term 
is O(Re1,'2$112) smaller than the Stokes drag term. Here, Re,  = 2pf (C2)l i2u/p. This 
provides an upper bound on the importance of history effects, which decay more 
rapidly than indicated by the Basset formula for 7, > v / ( C 2 )  or Re,  > $ (Mei & 
Adrian 1992). 

We have also neglected interparticle hydrodynamic interactions in writing (2.4). The 
leading effect of hydrodynamic interactions is an 0($1/2) enhancement of the drag on 
a particle (Brinkman 1947). In addition, for particles of large Stokes number, the 
change in the velocities of the particles due to lubrication forces will be small, 
O[log(a/h)/St,] (Koch 1990), where h is the mean-free path of the gas. The Stokes 
nvmber S t ,  = 2pp( C2)"2a/9p is based on the root-mean-square velocity of the 
particle. Here p p  is the density of the particle. 

Under steady simple shear flow, the number density and second moments of the 
velocity distribution are constant, and the contracted third moments vanish due to 
symmetry. As a consequence, the average velocity of the particles follows the velocity 
of the fluid. This result can also be easily understood from the momentum equation for 
the particle phase. For a steady simple shear, the equation reduces to the condition 
that the mean drag due to the gas phase is equal to zero. Therefore, ( u )  = u and 
a(u>/ar  = G. Using (2.4) for the viscous drag force acting on the particle, the 
Boltzmann equation (2.3) can be rewritten as 

i, = - (u-u) /7 , .  (2.4) 

The order of magnitude of the convection and drag terms on the left-hand side are, 
respectively, yf and f/7,. The collision term on the right-hand side is O(Af/7,) where 
Af is the deviation from the Maxwellian. The order of magnitude of 7, is determined 
by the collision mechanism, which may be variance driven or shear induced. Variance- 
driven collisions dominate and 7, + 7, in the ignited state. For a variance-driven 
collision, the mean free path is a#-' and the relative velocity scales with (C2)1/2. 
As a consequence, the collision time is 7, - O ( U ~ F ' / ( C ~ ) > ' ~ ~ ) .  If (C2)>'12/lya % $-' and 
S t ,  $ % 1, we will have the situation 7, 4 y-l 4 7,. When this criterion is satisfied, the 
collision term on the right-hand side of (2.5) controls the velocity distribution function, 
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which is therefore close to the Maxwellian. However, in the quenched state, where most 
of the collisions are induced directly by the mean shear, the relative velocity is O(ya) 
and the collision frequency is O(yana2n). As a consequence, r, is O(yq5-l and we have 
the conditions r, 9 r, % y-l if St 9 1. Neglecting the collision term altogether, we 
obtainf= niY(C) in the quenched state. 

The balance law for Y(C) may be obtained from the Boltzmann equation. 
Multiplication of (2.3) by Y and subsequent integration over d3C yields 

The right-hand side of (2.6) represents the rate of change of (u> due to collisions. 
Although the collisions conserve particle mass, momentum, and mechanical energy, 
Y = mC or imC2 are not conserved because these quantities differ from the momentum 
and energy by factors of order mya and m(ya),, respectively. Thus, i3,(C2)>lat is non- 
zero but is small, O(y3a2#). In the ignited state, ICI = IvI 9 ya  and we can neglect this 
small collisional source. The collision terms will also lead to a transport of momentum 
and energy; the momentum and energy transferred from one particle to another in a 
collision is instantaneously transported through a distance 2a. However, in the dilute 
limit, the mean-free path a$-' is much larger than 2a and the collisional transport is 
much smaller than the transport due to the random translational motion of the 
particles. This is directly analogous to the situation in a dilute hard-sphere gas. 

Then, by taking Y in (2.6) to be ps CC, the balance laws for the components of the 
stress tensor are given by 

where pij = p,(Ci Cj), and ps = nm is the density of the suspension. By summing the 
balance laws for (P,,), (P,,), and ( P , , ) ,  the energy balance can be obtained without 
determining the full velocity distribution function : 

Equation (2.8) simply states that the work done by the shear transforms the energy 
associated with the mean motion into fluctuating energy and viscous drag dissipates the 
fluctuating energy into heat. 

In a collision between a pair of elastic particles, the velocities vi and vi, of the 
particles after collision are related to those, v, and v,, before collision and to the unit 
vector k ,  directed from the centre of the first particle to the centre of the second at 
impact. The velocity change in a collision is given by 

(2.9) 

where Y = 1, 2 and g = v, - v,. The total change A Y  in a collision is defined as A Y  = 
Yi  + Yi  - Yl - Y,. For example, the changes in the second moments during an elastic 
collision are given by 

(c;-c,) = (v;Fu,)  = (-l)'(g*k)k, 

(2.10) 

where w = C, - C, = (v, - v,) - Au with Au = u1 - u,. 
To obtain the stress tensor for the particle phase from the balance laws for the 

second moments, the collisional change in the second moments, i.e. the right-hand side 
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of (2.7), must be known. The rate of change of the property Y due to collisions can be 
evaluated as the integral over all possible collisions of the change in Y in a particular 
collision multiplied by the frequency of such a collision, i.e. 

n- = ‘1 (AY)f(2)(C,, C,)(g-k)dT, (2.11a) 
a t  g.k>O 

where we have introduced the abbreviated notation 

d T =  4a2dkdCdC,. (2.11 b) 

Here the complete pair distribution f(’)  is defined such that 

f(”(c,, rl, c27 r,) dC, dr, dC, dr, 

is the number of pairs of particles that at time t are located in the volume elements dr, 
and dr, centred at rl and r, with velocities in the volume elements dC, and dC, at C, 
and C, in velocity space. Consequently, the number of collisions per unit volume per 
unit time is f2)( C,, C,) (g -k )  dT. In order to relate the complete pair distribution 
function at collision to the one-particle velocity distribution function, we adopt 
the assumption of molecular chaos. Thus, we ignore the possible correlation in 
the velocities of colliding particles, so that the pair distribution function for two 
colliding particles is a product of the single-particle velocity distribution, i.e. 
f(”(C,, C,) =f,(C,)-f ,(C,).  This assumption is valid when the volume fraction is low 
and the Stokes number is high. 

Since the stress tensor is related to the second moment of the fluctuating velocities, 
it is convenient to express A(C, Cj) in terms of the relative fluctuating velocity w instead 
of the relative velocity g .  As a result, the collisional change of the second moments is 
given as 

(2.12) n ac(cicj) = ‘s 
A( C, Cj)f , f ,  (g  - k)  d T  = El + E, + E3, 

at g . k > O  

where 

c, = (w-k) [2(w-k) k ik j - (w ik j+wjk , ) ] f , f , (w .k )dT ,  (2.13) 

E, = 1 2[(Au. k)’k, ki ] f , f ,  dT, 
g.k>O 

and 

(2.14) 

c3 - = 1 (Au - k) { 3[( w - k), + (w - k) (Au - k)] ki ki 
g . k > O  

- [2(w* k) + (Au-k)] (wi kj  + wj ki ) } f , f ,  dT. (2.15) 

In the ignited state, IAul 4 IwI and E,+E3 is O ( ~ L Z / ( C ’ ) ’ ’ ~ )  smaller than El. On the 
other hand, IAul % Iw1 in the quenched state and El + E3 can be neglected. 

In order to evaluate the collision integrals for the second moments and obtain the 
stress tensor, the velocity distribution function must be known. However, owing to the 
mathematical complexity of the nonlinear Boltzmann equation, it is not possible to 
obtain an exact analytic solution. Therefore, the velocity distribution function will be 
assumed to be a truncated Hermite expansion in the ignited state and the coefficients 
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in the expansion will be determined by satisfying the second-moment balance 
equations. In the quenched state, the velocity distribution will be determined as a 
perturbation to a delta function. 

3. Ignited state (7, < T J  

In the ignited state, a particle typically flies 'randomly' with a small change in its 
velocities caused by drag during the flight from one collision to the next. To understand 
the ignited state better, it will be helpful to review the energy balance controlling the 
root-mean-square fluctuating velocity ( C')liZ. The order of magnitude of the particle 
velocity fluctuations at steady state can be determined by the balance between the 
energy input in shearing the suspension and the energy dissipation due to drag. The 
shear work is approximately equal to p p y 2  while the viscous dissipation is 67cpan( C'). 
Here ,up is the particle-phase shear viscosity and can be estimated from the kinetic 
theory of dilute gases to yield ,up - ps a$-'( C2) l i2 .  The energy balance then shows that 
the velocity fluctuation is ( C2) l i2  - ( S t / # )  ya. Thus the criterion for a collision- 
dominated velocity distribution is St = y~~ % 1. We might have expected intuitively that 
the criterion for the ignited state would depend on the volume fraction as well as the 
Stokes number and that the system would be quenched for sufficiently small volume 
fractions. However, the criterion for the existence of the ignited state is independent of 

and this suggests the possibility of multiple steady states for sufficiently small #. This 
conjecture will be confirmed in $5 .  

For a collision-dominated system, we expect the velocity distribution to be 
Maxwellian to leading order. The shear will cause an O(Stp') deviation from the 
Maxwellian, which gives rise to the shear viscosity of the particle phase, and an O ( X 2 )  
deviation, which corresponds to the normal stress difference. 

3.1. Variance-driven collisions 

To obtain an approximate analytical solution of Boltzmann's equation, a perturbation 
scheme based on the assumption that the fluctuating velocities of the particles are 
Maxwellian to leading order has usually been adopted. Examples include the 
Chapman-Enskog expansion (Chapman & Cowling 1974) and the method of moments 
(Grad 1949). In addition to these two standard methods, the velocity distribution 
function can be assumed to be an anisotropic Maxwellian (Goldreich & Tremaine 
1978; Jenkins & Richman 1988). 

In this paper, a moment method is employed to derive the collisional change in the 
second moments of the velocity fluctuation. In general, the velocity distribution 
function f can be written as 

where 0 is a measure for the deviation off from the local Maxwellian distribution 

f=fd  +a (3.1) 

The deviation from the Maxwellian @(t, Y, C )  can be expanded in a series of orthogonal 
functions. Usually, the expansion functions will be tensors, such as tensor Hermite 
polynomials or tensor Sonine polynomials. Thus, 
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Here hjr!,in is a tensor polynomial of rank n in three-dimensional space and the 
orthogonality of the tensor polynomials is given by 

(3.44 

(3.4b) 

when {i,, ..., in> is a permutation of {jl, ...,jn} and zero otherwise. ( - ) M  means an 
average over velocity space weighted by the Maxwellian. The expansion coefficients 

are determined by 
a(%) a l . . . an  . = (h;r!,in c D ) ~  = (h!r!,,,). (3.5) 

Since no spatial gradient of a moment can occur for simple shear flow, the odd 
moments need not to be considered. In addition, we assume that the influence of the 
fourth and higher moments on the stress tensor is small. Thus the deviation CP can be 
approximated by 

with 

(3.6a) 

(3.6b) 

Upon changing variables from C, and C, to w and q = (C,+ C2)/2, noting that 
dCldC, = dwdq, and carrying out the integrations in (2.12) and (2.13) with the 
second-order Hermite expansion (3.6a, b), the collisional rate of change of the stress 
tensor due to variance-driven collisions is given by 

where ej is the traceless part of the stress tensor, e.g. tj  = P,j,-pdij. Here p is the 
particle pressure defined as p = ps T. The subscript i on the collisional change of the 
stress tensor indicates that this approximation is valid for the ignited state. The pair 
distribution function f, f, in (2.13) contains terms that are linear and quadratic in the 
perturbation 0. These lead to the terms in (3.7) that are linear and quadratic in the 
second moment. The ratio & ( 2 , 2 2 ) / w ( 2 ~ 2 )  is a measure of the relative size of the quadratic 
and linear terms. 

Note that (3.7) contains quadratic terms in the collision integral due to the product 
of the linear terms in the velocity distribution but no contribution from the quadratic 
terms in the velocity distribution. The quadratic terms (fourth moments) in the velocity 
distribution do not contribute to the collision integral for the second moment owing 
to the orthogonality of the tensor Hermite polynomials. 

Herdegen & Hess (1982) show that the collision coefficients w(’r2) and & ( 2 , 2 z )  of (3.7) 
can be expressed in terms of the collision integrals Q ( p ’ q )  evaluated by Chapman & 
Cowling (1 970) : 

w ( 2 , 2 )  = ;&2(2,2) 9 (3.8) 

1, (3.9) &2(2,22) = 5 2 (2,3) -fJ2(2,2) 
5 4 7 Q  

where, for hard spheres of diameter 2a, Q ( P v q )  are given by 

(3.10) 
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with (3.1 1 )  

In the kinetic theory of gases, two molecules separated by a distance r with a repulsive 
force given by a power law F - rP5 are termed Maxwell molecules. &(2,22) vanishes for 
Maxwell molecules and one only has the first, linear term on the right-hand side of (3.7) 
for this special interaction potential. For hard spheres &(2*22) is non-zero but it is 
substantially smaller than d 2 g 2 ) .  

On substituting (3.7) for the collisional change of the stress tensor into (2.7), a closed 
set of nonlinear equations for the second moments is derived from Boltzmann's 
equation with the help of the moment method. In this equation, terms nonlinear in the 
shear rate due to the presence of a velocity gradient (shear flow) as well as 
nonlinearities emerging from the collision term are taken into account. The relevant 
linear and nonlinear collision integrals have been expressed in terms of Chapman- 
Cowling SZ-integrals and can be evaluated for various collision models (Herdegen & 
Hess 1982). 

3.2. Stress tensor 
Let us now introduce the following non-dimensional time, position and velocity : 

t" = yt ,  r" = r/a,  ii = u/(ya).  (3.12) 

The dimensionless temperature, pressure and pressure tensor are defined as 

(3.13) 

All the equations that follow will use non-dimensional variables, and, for clarity, we 
shall henceforth omit the tildes. 

Before solving the closed nonlinear equations, (2.7) and (3.7), for the stress tensor, 
it will be helpful to have an order of magnitude analysis of each term in the nonlinear 
equations. The convection and drag terms on the left-hand side of (2.7) are O ( T )  and 
O(St-'T), respectively. According to the energy balance, the collision time 7, and 
granular temperature T are found to be O(St-') and O(St/q5)2, respectively. In 
addition, PxY is O(St-lT). There are no convection terms in the equations for PYy and 
ez. Therefore, a balance of the drag and collision terms gives O ( W 2 T )  normal stress 
differences. As a result, the linear and quadratic terms involving the normal pressure 
pii on the right-hand side of the equation for a,(piJ/at are O(St-'T) and O(Str3T) 
respectively. The quadratic terms involving the shear stress PxY are O(St-'T). The 
linear and quadratic terms in a,(PX.)/2t are O(T)  and O(StP2T) respectively. 

According to the above order of magnitude analysis, the quadratic part of 
the collisional source Ci is O(StP) smaller than the linear part. In addition, 
O(2,22)/w(2,2) = 1/14 << 1. Thus, the quadratic terms in i3,(PxY)/at and the PEk terms in 
a,(pii)/at are a factor of 350 smaller than the linear terms even for St - 5 ,  which, as 
we shall see, is the smallest Stokes number for which the ignited state exists. Thus, we 
neglect these small terms and the collisional change of the stress tensor (3.7) reduces 
to 

(3.14a) 

with 5 22 = <  YY =-I< 2 zz = 1  , < xy = o .  (3.14b) 

Using (2.8) and substituting the collisional change of the stress tensor (3.14) into the 
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balance equations (2.7) for P,,, Pyy, and P,,, one obtains the stress tensor in terms of 

P - p  = - 1--- (1 +?Stw)-T, 
22 ( :;it) 

(3.15) 

(3.16) 

(3.17) 

Pxy = -$Stw(l +?Stw)-T (3.18) 

Here w = q5T112/~'iz. To complete the solution we need to Ldtermine T. This is 
accomplished by substituting (3.16) and (3.18) for Pyy and Pxy in the xy-component of 
(2.7) to yield a quartic equation for T'12: 

~ ~ [ 4 0 3 2 S t ~ ~ ~ + ( 1 7 4 0 S t -  140St3)+ 1751 = 0 (3.19) 

which can be solved analytically. The three distinct roots are 

q = o ,  (3.20 a) 

(3.20 b) 
(st2--)-[(~t2-y)2- 1221112 

2St2 

with 

(3.20 c) 

(3.20 d) 

T,  is unstable because the shear work is larger than the viscous dissipation when 
T > T,, and vice versa. 

(ignited state), which we obtained 
by assuming that the velocity distribution function was a truncated Hermite expansion 
(3.6), we obtain a third solution, = 0, corresponding to a velocity distribution that 
is a delta-function, i.e. f(C) = n&(C). Although this velocity distribution satisfies both 
the Boltzmann equation and the balance equation for the stress tensor, it has always 
been neglected in the standard kinetic theory for dilute gases. However, this solution 
is physically relevant to a dilute sheared gas-solid suspension and corresponds to the 
quenched state observed in the numerical simulations. Most of the particles in the 
quenched state travel with the velocity of the fluid, i.e. C = 0. However, occasional 
shear-induced collisions occur and cause a small fraction of the particles to have 
substantial velocity fluctuations. Because we have neglected shear-induced collisions in 
this section, we are unable to determine the small (but non-zero) magnitude of the 
temperature in the quenched state at present, but we will address that problem in the 
following section. 

Returning to our solution (3.15)-(3.18) and (3.20~) for the ignited state, the 
dimensional viscosity of the particle phase and the normal stress differences are 

g 1 is stable and corresponds to the ignited state. 
In addition to the solutions T,  (unstable) and 

and 

5 7 P  
48 

p p  = @(St)pf with pf = -pp  Tli2a, (3.21 a, b) 

(3.22a, b) 
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FIGURE 1. 
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FIGURE 2. The normal stress differences are plotted as a function of St for $b = 0.01. The lines are 
theoretical predictions and the symbols are the simulation results. 

Comparisons between results derived from the kinetic theory and data obtained 
from dynamic simulations are shown in figures 1 and 2 for particle viscosity and 
normal stress differences, respectively. The agreement is quite good even for Stokes 
numbers as small as 5 - the smallest value for which the ignited state was observed in 
the simulations. In the asymptotic limit St 9 1, the viscosity reduces to ,up*, which is 
identical to the viscosity of a dilute gas of hard spheres. This is not surprising because 
the behaviour of the particles will become like that of hard-sphere molecules as St -too 
in the sense that the particles travel in free flight without significant energy dissipation 
between successive collisions. 
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According to (3.22), the normal stresses satisfy 

pxx ' P,, ' pyy. (3.23) 

Pxx is the largest normal stress because the streaming term only contributes to the xx- 
component of the pressure tensor. P,, is slightly larger than Pyy because the coefficient 
in front of P&, in the zz- and yy-components of the collisional source (3.14) are slightly 
different, that is collisions convert the moment Pxy into P,, more efficiently than they 
do into Pyy. In the asymptotic limit St >> 1, the temperature and normal pressure reduce 
to 

(3.24) 

Note that the temperature is inversely proportional to 4' just as in a dilute granular 
flow of inelastic particles (Lun et al. 1984), even though the scalings of the dissipation 
due to inelastic collisions and viscous drag are different, i.e. 42T3/2 and $T, 
respectively. Using (3.24), the first and second normal pressure differences are 

As St +a, Pxx = Pyy = P,, as in a Newtonian fluid. The results (3.25) and (3.26) should 
be compared with the corresponding expressions given by the Chapman-Enskog 
expansion up to Burnett order for hard spheres: 

(3.27) 

(3.28) 

Burnett (see Chapman & Cowling 1970, p. 289) solved the Boltzmann equation to 
obtain the velocity distribution using the Chapman-Enskog expansion which expands 
the velocity distribution in a series and his results are exact to O(y2). There is only a 
small difference between the numerical coefficients in our and Burnett's results. This 
error is due to the assumed form of the distribution function in our analysis. The drag 
does not alter the normal stress differences to this order. The truncated Hermite 
expansion gives a very good approximation to the solution of the Boltzmann equation 
for the shear viscosity and normal stress differences of the particle phase and it avoids 
a tedious iteration procedure required in the Chapman-Enskog method. In addition, 
the Hermite expansion provides an accurate expression for the collisional change of the 
second moment. For Sf % I ,  one has the same dimensional constitutive relation for the 
stress tensor as for a dilute molecular gas, i.e. 

P = p s  T l - 2 ~ ~  D, D ~ ( V ( U )  + V (  u)') - i l V *  (u). (3.29) 
From the above observations, we can also deduce the dimensional constitutive 

relations for the heat flux of the particle phase for St % 1 from dilute gas theory 
(Chapman & Cowling 1970, p. 168): 

1 1  

257~"~ 
q = - k ; f : V T  with k;f: = - 64 pp T1I2a. (3.30 a, b) 

Although the expression for the particle viscosity in the limit St+a becomes the 
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same as that for a molecular gas, the suspension can be said to exhibit a shear- 
thickening behaviour. The granular temperature cannot be specified independent of the 
shear rate. It is controlled by the balance of shear work and dissipation due to drag and 
is proportional to [(St/qi)(ya)12 in the high Stokes number limit. Thus, the shear 
viscosity is proportional to shear rate squared at St-tco. 

In order to obtain a real solution for the temperature in (3.20), one must satisfy the 
criterion that the expression within the square root is greater than zero, i.e. 

(St2+)'- 12' 2 0 or St 2 (F)1/2. (3.31) 

In other words, we must have St at least as large as St, = (171/7)'/' to obtain the 
ignited state in a dilute gas-solid suspension. Otherwise, the only solution is the 
quenched state. 

Although the Stokes number based on shear rate is O(1) as St-St,, the velocity 
variance in the ignited state remains quite large T+(O.O75/q5)', so that St, % 1 and 
hydrodynamic interactions may always be neglected in the ignited state of a dilute 
suspension. For Stokes numbers that are close to the critical value St, = (171/7)''', the 
deviation of the velocity distribution from an isotropic Maxwellian becomes large and 
the expressions for the viscosity and the normal stress differences differ from the 
expressions for a molecular gas. The deviation of the particle viscosity from the 
Newtonian viscosity ,u; is given by the factor 0 whose dependence on the shear rate 
is expressed in (3.20d). It is interesting to note that the ratio of the particle viscosity to 
the Newtonian value, i.e. 0 = ,u,/,u.f, increases with increasing shear rate (shear 
thickening) whereas it decreases with increasing shear rate (shear thinning) in the 
molecular case (Zwanzig 1979). The molecular gas becomes more dissipative as the 
shear rate is increased and ya approaches T1/'. However, the opposite is true for the 
particle suspension. The granular temperature is proportional to y4, so the ratio 
ya/ T'/' actually becomes smaller and the velocity distribution closer to Maxwellian as 
the shear rate increases. 

Using a moment method based on a truncated Hermite expansion for the velocity 
distribution, two stable steady states have been obtained. The ignited and quenched 
states found in numerical simulations correspond respectively to 7 and &. The result 
that the ignited state exists only for St > (171/7)'/' is consistent with the numerical 
simulations which show the ignited state for St 5 (cf. figure 1). Because the ignited 
state can exist even for very small volume fractions, we may expect that for small 
enough qi both the ignited and quenched states are possible. In this region of multiple 
steady states, the unstable steady state T,  may be expected to provide a boundary 
between the initial velocity variances that will lead to the ignited or quenched state. 
According to (3.20), this unstable solution is T,  = O(St3qi)-2. 

It will be shown in the next section that shear-induced collisions lead to an O(St'q5) 
temperature. If the Stokes number is increased to a critical value for which St3$ = 

O(1), then the shear-induced variance will be as large as the unstable solution T,  and 
we may expect that the system will be ignited independent of initial conditions. This 
hypothesis will be confirmed and a quantitative value of the critical Stokes number will 
be obtained in 55. 

4. Quenched state (7, % 7,) 
Most of the collisions in the quenched state are shear induced. These collisions are 

infrequent and 7, % 7,. We expect the velocity distribution in this state to be very 
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different from the Maxwellian, because the particles relax close to the local fluid 
velocity between successive collisions and, at any time, the fraction of the particles that 
have velocities significantly different from the velocity of the fluid is small. Before 
calculating the stress tensor from the moment method, we will obtain a qualitative 
understanding of the velocity distribution function by examining the Boltzmann 
equation. The O(Af’7,) collision term is small compared to the O ( y f )  streamline 
crossing and the O( f /7J  drag term in the limit $ 4 1 and St 9 1 except near C = 0. By 
neglecting the collision term in the Boltzmann equation, one obtains a first-order linear 
partial differential equation. For simplicity, we can integrate the equation over C, to 
obtain 

where 

a?,, a f x y  (stc,+c,)-+c -+2f,, = 0, ac, y ac, 

J -m 

This equation can be solved using the method of characteristics to give 

fxy[Cx(f)9 C,(t>l = f o  eZt, (4 .2~)  
C,(t) = C,,e-t-Cy,Stte-t, C,(t) = Cyoept. (4.2 b, c) 

Here the characteristic variable t can be thought of as the time following the collision. 
As t +a, C, and C, + 0 and f +a. The determination of C,,, C,, and f ,  requires a 
complicated analysis of the shear-induced collisions, which we shall not pursue. 

Integrating (4.1) over C,, we obtain a first-order linear ordinary differential 
equation, 

where the marginal distribution function f ,  is a simple reduced distribution that retains 
the main physical features off and is defined as 

f,(C,> = Sm d c x r  dC,f(C). 
--oo -m 

The solution of (4.3) is 
f ,  = kl/lC,I, 

where k ,  is a constant whose determination requires a detailed analysis of the sheared- 
induced collisions. 

The above analysis shows that the velocity distribution has a highly peaked structure 
and is singular at C = 0. The fact that J” dC, f ,  gives a logarithmic singularity indicates 
that most of the particles are close to C, = 0. The singularity would need to be removed 
by including shear-induced collisions. This result suggests that the majority of the 
particles travel with the velocity of the fluid. However, when a shear-induced collision 
occurs, each of the particles gains an O(ya) velocity on impact and travels an O(Sta) 
distance in the y-direction. By crossing streamlines, the particle’s fluctuating velocity 
in the x-direction grows to O(Stya). 

The momentum transferred by particle translation will lead to an increase of the 
effective viscosity of the suspension. Since the rate at which the particle experiences 
shear-induced collisions is O(ya$) and the time that its fluctuating velocity persists is 
7u, a small O(St$) fraction of particles is not moving with the local fluid velocities at 
any given time. Therefore, we expect the order of magnitude of the components of the 
stress tensor for the particle phase to be Pyy = O(St$), P,, = O(St$), P,, = O(St3$), 
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and Pxy = O(Stz$). Note that the first normal stress difference Pxx - P,, is very large in 
the quenched state. 

Following the same steps that were applied to the ignited state, the stress tensor in 
the quenched state can be obtained as a solution of the balance equation for the stress 
tensor (2.7) with (2.12). In order to evaluate the collisional change in the stress tensor 
due to shear-induced collisions, an appropriate velocity distribution function must be 
assumed. Although particles with O(Stya) velocities might undergo a second, variance- 
driven collision after a shear-induced collision, the probability of such a collision is 
small, O(Stz$). Therefore, we can obtain the leading-order collisional change of the 
stress tensor by assuming that the velocities of the colliding particles are equal to the 
local fluid velocity, i.e. f(C) = n8(C). 

By assuming that the velocity distribution function is a delta-function, we have w = 
0 and g = Au. Using (2.17), the shear-induced collisional change of the stress tensor is 
given by 

(G), = 1 (Au k)'ki kj dk 
Au.k>O 

with (Au-k) = -2k,k,, (4.7) 

where the subscript q indicates that this estimate of the collision integral is accurate for 
the quenched state. After integration, one obtains 

and (4.9) 

Although energy is conserved in each collision, there is a shear-induced collisional 
source of particle temperature associated with the transformation of the energy of the 
mean motion into fluctuations : 

(4.10) 

The shear-induced collisional source can be neglected when (C2)l lZ % ya as it is in 
the ignited state. 

Substituting for a,(pij)/at in the balance equation (2.7) from (4.8) and (4.9) and 
solving for the stress tensor of the particle phase yields 

64 
3157~ 

P,, = - (4.11~) 

(4.11b) 
128 
315 

P,, = 44, = --St$, 

p =-- 
xy 3157~ 

(4.1 1 c)  

Whereas the stress in the particle phase was larger than that in the gas phase when the 
suspension was ignited, the particle phase makes a small O(St3$z) contribution to the 
stress tensor of the suspension in the quenched state. Consequently, the stress tensor 
of the quenched suspension is dominated by the gas phase. 
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Neglecting the effects of particle-particle collisions, the effective viscosity of a 
suspension of particles with C = 0 in simple shear flow can be described by the Einstein 
relation (Einstein 1906): 

P e f f  = Pu[l +%J + O(4”I. (4.12) 

In the quenched state, the effective viscosity will be enhanced by the momentum 
transferred due to the random flight of particles after shear-induced collisions. By 
summing up contributions from (4.11 c) and (4.12), the effective viscosity is given by 

pef f  = p[l+&5+((32/357~) S t 3 + g S t 2 )  $’+ O(4’)]. (4.13) 

Simple additivity is justified since the Einstein term comes from the many particles 
following the local fluid velocity and the kinetic term from the few that recently 
collided. Since the criterion for the existence of the quenched state is St34 6 O( l), the 
contribution from shear-induced collisions will not exceed that from the O(4) term. 

Hydrodynamic particle interactions have been neglected in the preceding analysis. 
This approximation is valid even in the quenched state as long as St % 1. 

We have been able to calculate the leading-order behaviour of the stress tensor for 
St34 + 1 by perturbing from a state in which the velocities of the colliding particles are 
equal to the local fluid velocities. However, we are interested in the behaviour of the 
quenched state for concentrations up to the critical point, St34 - O( 1). To test the 
accuracy of the preceding approximate analysis and obtain accurate results for St34 - 
O(l), we will conduct Monte Carlo simulations which solve the full nonlinear 
Boltzmann equation. As discussed at length by Bird (1970) and Hopkins & Shen 
(1992), the Monte Carlo technique has been devised to mimic the dynamics described 
by the Boltzmann equation. Since the details of the method can be found in Bird (1970) 
and Hopkins & Shen (1992), we only review the key points and indicate the minor 
modifications needed to include the effects of viscous drag and shear-induced 
collisions. 

The key ideas of the direct-simulation Monte Carlo method (DSMC) are: (a)  the 
uncoupling of particle translations and collisions during the time step At, and (b) the 
simulation of particle collisions without keeping track of position coordinates between 
successive collisions. An impact parameter is generated randomly before each collision 
and gives the local fluid velocity difference Au needed to evaluate the rate of shear- 
induced collisions. Idea (a)  is valid provided that the condition At + min(7,,7,) is 
satisfied. Idea (b) is valid provided that the system is so small or homogeneous that the 
spatial variations are negligible. 

The simulation procedure during the time step At is described as follows. A 
collisional configuration (u, ,  u2, k) is created by choosing at random the fluctuation 
velocities C, and C, from the set of velocities of the simulated particles and a direction 
k from a uniform distribution in space. The particle velocities u1 and u, relative to the 
mean velocity at the point of contact are obtained by adding a mean velocity 
component to the chosen fluctuating velocities C, and C,: 

u, = C, - k,  ex. (4.14) 

A collision is impending if g - k  > 0. With the assumption of molecular chaos, the 
fraction of colliding particles with C, in dC,, C, in dC, and k in dk in the set of all 
collisional configurations is represented by p(C,, C,, k) dk dC, dC,, where 

u, = C, + k,  ex, 

(4.15) 
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Here f is the normalized distribution f / n  and u is the total dimensional collision 
frequency in the simulated system given by 

nN 
u = 7 rfjC,)fjC,) a2(g- k) dk dC, dC,. (4.16) 

L J  

The samples chosen at random must be weighted according to g . k  to form the 
configuration distribution defined in (4.15). In practice, the standard acceptance- 
rejection method is adopted by determining the effective maximum value c = 
lg-kl,,, for the N particles in the simulated system. If a random number R uniformly 
distributed between 0 and 1 satisfies 

R < (g.k)/t: (4.17) 

then the pair is accepted as a collision pair. Clearly, 5 is a positive number and both 
accuracy and computation time increase with increasing c. In the limit <+a, the 
criterion is exact. If the pair is accepted for a collision, the post-collision velocity 
components are calculated. 

Between collisions the fluctuating velocity of a particle changes due to both 
streamline crossing and viscous drag according to 

1 
- = -_ c - c * v u ,  dC  
dt St 

(4.18) 

which can be solved to give 

C(t + At) = C(t) ePAtlst - CJt) At ePAtIst e,. (4.19) 

Thus, after each collision described above, the fluctuating velocity of every particle in 
the simulated system will change as given in (4.18). After each time interval At, a 
collision will take place. The collision time interval At is chosen as the reciprocal of 
the average dimensional frequency of collision u. This can be calculated using the 
numerical equivalent of (4.16) : 

A t  = l / ~  = (iNn7Cc2(g.k))-', (4.20) 

where ( . ) denotes an average over all collisions. Finally, the procedure is repeated 
until the system reaches steady state. 

When the velocities of the colliding particles are equal to the local fluid velocities at 
their centres, the average dimensional 7, can be evaluated using (4.16): 

7, = N / u  = ;7C(y+)-' 9 7,. (4.21) 

This result provides an asymptotic value of 7, for St3+ 6 1 and will be used as a 
consistency check for the simulation. Since shear-induced collisions dominate in the 
quenched state, a large number of particles is required in the simulation. For example, 
if we consider a simulated system with q5 = 5 x loP4 and St - O(10), we have 

and 

7, = st - ~ ( i o ) ,  7, - n/2+ - 3 x 103 

At - T,/N N (103/N). 

If we choose At  - O(1) to satisfy the criterion At -g min (T,, T,), then we must have 
0(103) particles in the system. 

The results of Monte Carlo simulations are shown in figures 3-6. The variation of 
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FIGURE 3. The variation of the stress tensor with the volume fraction for St = 10. The lines 
correspond to the asymptotic analysis and the symbols to the simulation results. 

lo-' I 

10-2 y 
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St 

FIGURE 4. The variation of the components of the stress tensor with Stokes number for 4 = 5 x lo-*. 
The lines correspond to the asymptotic analysis and the symbols to the simulation results. 

the stress tensor with volume fraction is shown in figure 3 for S t  = 10 along with the 
asymptotes (4.11) obtained from the moment method. As $ increases, the deviation 
from the asymptotic curve grows owing to the increasing frequency of variance-driven 
collisions. The simulation points in figure 3 extend up to $c = 1.4 x When $ 2 
$,(St), the system is ignited, even when the initial variance is zero. Figure 4 shows the 
variation of the stress tensor with S t  for $ = 5 x The deviations from the 
asymptotic curves increase as St increases and finally the system attains the ignited 
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FIGURE 6. Log-log plots of the marginal velocity distribution functions f, and f, for 4 = 5 x 
and 1 x The solid lines correspond tof,(C,) and the dashed lines tofz(Cz). 

state when St is larger than a critical Stokes number of about 13. All the simulation 
data were obtained with an initial condition of zero velocity variance. 

The knowledge of the velocity of all the particles allows one, in principle, to 
construct the velocity distribution function from the simulation. However, this is a 
complicated function to represent, since it depends on all three velocity components. 
Consequently, we will focus on the marginal distribution functions f, andf,. Here f, 
has a definition analogous to (4.4) for f,. The marginal velocity distribution f, obtained 
from the simulation is shown in figure 5 for St = 10 and # = 5 x 
When a shear-induced collision occurs, the particle has an O(Stya) velocity for an O(7,) 

and 1 x 
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time period and then relaxes to an O(ya) velocity after an O[ln (St) T,] time. Therefore, 
there is an O( 1 )  fraction of the particles with fluctuation velocities much smaller than 
O(ya), an O[Stq5ln(St)] fraction with O(ya) velocities, and an O(Stq5) fraction with 
O(Stya) velocities. The velocity distributions in figure 5 have highly peaked structures. 
Note that figure 5 is a logarithm-linear plot, so the distribution is even more peaked 
than it appears. As expected, the velocity distribution for the higher concentration has 
a higher fraction of particles with velocities different from local fluid velocity. Figure 
6 shows log-log plots off, and fv. They are nearly linear, indicating that f, and fy are 
given approximately by power laws, f, cc C;0.91 and f, cc Ci1.03. The scaling off, is 
close to the result (4.5) obtained by analysing the Boltzmann equation. The power law 
for f, suggests that it differs from 1/C, by a logarithmic factor, as might be expected 
from (4.2). 

5. Transition from the quenched to ignited state 
In the quenched state, the particle temperature grows as St or q5 increases toward the 

critical point. Beyond this point, the system jumps to the ignited state. A simple 
explanation for the existence of the critical St for a fixed q5 or the critical q5 for a fixed 
St is as follows. If the shear-induced variance is greater than the variance of the 
unstable state q,. then the imposed shear will create enough velocity fluctuations to 
take the suspension past the unstable state even when the initial variance is zero. 
Consequently, only the ignited state will exist beyond the critical point. According to 
this simple argument, the critical point can be estimated as the point where the O(St3q5) 
shear-induced temperature is as large as the O(St3#)-2 unstable temperature. Thus, the 
critical point is St34 - O( 1). Through simulations the critical point can be determined 
and an Stc-4, diagram can be constructed. However, a theoretical prediction is also 
desirable. A quantitatively accurate prediction would require the determination of the 
full velocity distribution function from the Boltzmann equation near the critical point 
where it is neither close to the Maxwellian nor to a delta-function. However, a modified 
moment method, which takes into account the effects of both variance-driven and 
shear-induced collisions, will explain qualitatively the multiple steady states and 
hysteresis found in the simulation. 

The stress tensor in the quenched state resulting from the shear-induced collisions 
alone is quite close to the results from simulation as shown in figures 3 and 4. However, 
near the critical point, the exclusive consideration of shear-induced collisions will lead 
to an underestimation of the temperature owing to the increasing possibility of a 
second collision after a shear-induced collision. Because the majority of the particles 
have fluctuating velocities that are either very large or very small compared to ya, we 
can superimpose the contributions of the variance-driven and shear-induced collisions 
additively : 

In $ 3 ,  we kept the contribution of P:, in the collisional change of the stress tensor 
due to variance-driven collisions. However, the primary effect of the Pgv term is just 
to give the slight difference between P,, and <z. For simplicity, we now neglect this 
nonlinear term, so that (3.15a) can be reduced to 
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Substituting the change in the stress tensor due to both variance-driven and shear- 
induced collisions into the balance equation (2.7), the stress tensor can be expressed in 
terms of the temperature as 

li2St$ yT1I2St3$ (64/3 15n) St3$ &St2$ (128/3 1 5 4  St$ 
A 

+- + 
'XX=[BTA + A3 I T ' [  A3 A 2  

(5.34 

(5.3b) 

(5.34 

(5.3d) 

where 7 = 24/5nli2 and A is defined as 

A = 1 + ~ T ~ ' ~ s t + .  (5.4) 

The variance-driven and shear-induced collisions contribute to the first and second 
terms in the stress tensor, respectively. In the ignited state, T - O(St /$)2  and the first 
term dominates. In the quenched state, T -  0(St3q5) and the second term is the 
dominant one. 

The temperature of the system is determined by the energy balance (4.10) with (5.3 d )  
for Pzy. Rearranging the energy equation, one obtains a quartic equation for Tli2: 

(5.5) g(Q = ~z[~+bb5~+c(~+d[+e = 0, 

where [ = TI1' and the coefficients are 

576 128 8 576 
(315n 35 ) 3157~ 35 315n 

d = 27 - S ~ t ~ # ~ + - S t ~ 4 ~  , e = -St3#+-St2++-St#. (5.6d,e) 

The physically significant results correspond to positive real roots of (5.5). One root of 
(5.5) is always real and negative and will not be discussed here. To obtain a qualitative 
understanding of the other solutions, let us consider an asymptotic limit for which the 
solutions can be expressed analytically. In the limit q5 < 1, St b 1, and St34 < 1, three 
positive real roots are obtained as follows: 

(i) For [ - O(St3$)'i2, (5.5) reduces to 

&+e = 0. 
As a result, 

This result corresponds to the temperature of the quenched state. 



Simple shear J-Eows of dilute gas-solid suspensions 233 

I I I 1 

FIGURE 7. The granular temperature is plotted as a function of the volume fraction for St = 10. I and 
Q denote the ignited and quenched states, respectively. I + Q represents the region of multiple steady 
states. 

(ii) For 6 - 0(St3$)-' ,  (5.5) reduces to 

bC3 + cc2 = 0, 
As a consequence, 

This solution is the unstable state. 
(iii) For C - O(St/$), (5.5) reduces to 

at4 + bt3 = 0. 
Thus, we obtain the ignited state 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

For St - O(1), we have to solve (5 .5)  numerically. The roots of g(6) depend on St 
and $ and the numerical solutions are shown in figure 7 for St = 10 and in figure 8 for 
q5 = 5 x lo-'. For a given St as shown in figure 7, we can have three different situations: 

(i) four real roots (one negative and three positive: T,, T,, TJ, for $ < $c; 

(ii) four real roots (one negative, one double root q = T,  and TJ, for q5 = $c; 

(iii) two real roots (one negative and one positive q), for $ > q5c. 
Obviously, only the positive roots are physically realizable since 6 corresponds to 
particle velocity variance. For case (i), there are three positive roots: < T,  < q. Two 
of them (q and TJ are stable and T,  is unstable. In this case, one has multiple steady 
states: quenched and ignited states. If the initial velocity variance is larger than T,, the 
particle temperature will evolve toward the ignited state. Otherwise, it will go to the 
quenched state. Since T,  is proportional to $-2, a very large initial variance is needed 
to achieve the ignited state for a very dilute system. Case (ii), T,  = q, corresponds to 
the limit point in the lower solution branch where the stable quenched solution meets 
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lo4: 

FIGURE 8. 

St 

The granular temperature is plotted as a function of Stokes number of C$ = 5 x 

the unstable solution. It represents the critical point beyond which the quenched state 
no longer exists. For case (iii), only the ignited state exists. Beyond the critical point 
(q5,), the velocity variance due to shear-induced collisions is large enough to give 
ignition even if the system starts from zero variance. 

The effect of the interstitial gas on the low-density asymptote occurring in granular 
flow theory can be examined using figure 7. Unlike the granular flow theory which 
neglects the fluid-particle interactions, we have multiple steady states for $ < $,. In the 
ignited state, the temperature diverges as @ + 0 because the rate of viscous dissipation 
is proportional to @ while the work done by the shear is independent of $. However, 
to attain the ignited state, the initial velocity variance of the system must be greater 
than 0(St3q5)-2, which becomes large as q5 + 0. Thus, for a finite initial variance, the 
final state of the system will be quenched. In addition, when the temperature increases 
sufficiently, the Stokes drag law is no longer valid and nonlinear drag will play an 
important role in determining the temperature. The effects of nonlinear drag on the 
low-density asymptote will be discussed in the next session. 

For a given q5 the temperature of the system goes through three stages with 
increasing St. These stages are shown in figure 8. Below the critical point (St,,) only the 
quenched state exists because the viscous drag is so large that the shear work is unable 
to sustain the ignited state. As St is increased to the regime St,, < St < StCz, there are 
three roots corresponding to quenched, unstable and ignited states, 
respectively. The effects of increasing the Stokes number are to increase the viscous 
relaxation time of the particle and the probability of a second, variance-induced 
collision after an initial shear-induced collision. When St = Stc2, = T,, corresponding 
to the critical point beyond which the quenched system will spontaneously jump to the 
ignited state. Beyond the critical point (St,,), only the ignited state exists. 

As shown in figure 8, hysteresis is observed when we vary St. If the system is in the 
quenched state for a given q5 and one increases St gradually, then the critical point 
where the system jumps to the ignited state is St,,($). If St is decreased gradually for 
a system in the ignited state, the critical point where the system jumps down to the 
quenched state is Stel .  Therefore, one may have either the ignited or quenched state for 

< T,  < 
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Stc 

FIGURE 9. The critical Stokes numbers and volume fractions. The lines correspond to the 
theoretical predictions and the symbols to the simulation results. 

StCl < St < St,, depending on the previous history of the shear rate experienced by the 
suspension. 

Now we will obtain the critical points q5,, Stcl, and St,, from the energy balance (5.5). 
The critical points occur when we have double roots. As a result, the critical 
temperature satisfies both g(&) = 0 and g’(6,) = 0. Here g’ is the derivative of g with 
respect to 6, i.e. 

g’&) = 4ak; + 3bt: + 2 4 ,  + d = 0. (5.13) 

By solving (5.5) and (5.13) simultaneously for a given 4, one obtains the &(St,, 4,) and 
St,($,). A St,+, diagram can be constructed from the numerical results and is shown 
in figure 9. To obtain analytical results, g(&) = 0 and g’(&.) = 0 can also be solved for 
St %= 1 as follows. 

(i) When the double root is T,  = q, the root is much larger than one for q5 < 1. 
Thus, 

(5.14) 

and (5.15) 

From (5.14) and (5.15) one has 

g(&) z a(: + b[: + c[: = 0 

g‘([,) z 4at: + 3b[: + 24 ,  = 0. 

(5.16) 

Substituting (5.16) for [, into (5.14) yields the condition b2-4ac = 0. Thus the critical 
point is given as 

StCl = d24.  (5.17) 

This result is independent of volume fraction and very close to the result (171/7)l” 
obtained in $3. The small difference comes from the contribution of the nonlinear term 
to the collisional change of the stress tensor. It should be noted that StCl eventually 
decreases in a non-dilute suspension owing to the effect of the collisional stresses 
(Sangani et al. 1995) and the first stages of this behaviour can be seen in figure 9. 
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= T,, this root is O(1) and neglecting terms of 
O(St3$') one obtains 

g(&) M bt: + c[E + e = 0 (5.18) 

and g'(&) M 3 b g  + 2 4 ,  = 0. (5.19) 

From (5.18) one obtains 
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(ii) When the double root is 

Substituting (5.19) for 5, into (5.19), the final result is 

7875.n' ' I 3  
St:'$, = (=) M 3.23. 

(5.20) 

(5.21) 

By repeating calculations similar to those used to produce figures 7 and 8 for various 
values of St and $, we are able to locate the critical points for different St and 4 from 
the simulations. These critical points constitute a St,-$, diagram and are plotted in 
figure 9. The comparison between the theoretical analysis and simulation results is 
reasonably good. The lower critical point St,, M 5 obtained by simulation is in good 
agreement with the theoretical results (5.17) because at this point the deviation from 
Maxwellian is moderate (though not asymptotically small) and can be described by the 
Hermite expansion. From simulations, the upper critical point is Ste34, M 1.5. The 
value of the constant is smaller than the theoretical result 3.231 because of the 
underestimation of the collisional change in the stress tensor in the quenched state. We 
modelled the second collisions assuming that the velocity distribution could be 
described by the Hermite expansion. In the quenched state, we have P,, % P,, and a 
highly peaked velocity distribution which is so far away from the Maxwellian that one 
cannot obtain quantitatively accurate results from the perturbed Maxwellian. 

6. Suspension of particles with nonlinear drag 
The viscous drag acting on most of the particles in the suspension can be described 

by Stokes law in the limit Re, 4 1. The Reynolds number in an ignited dilute 
suspension is small if p,/pf % O(St'/$). However, for a system with a fixed density 
ratio, the linear drag law cannot be valid as St, = St'/$ is increased indefinitely. Thus, 
nonlinear drag will always become important in the ignited state, if we decrease $ 
sufficiently. 

In this section, we examine the effect of a nonlinear quasi-steady drag force on the 
dynamics of the suspension. In general, the drag depends on the time history of the 
particle velocity. However, for Re, - O(l), the history term decays rapidly for times 
larger than O(a/(C')'/ ') (Lawrence & Mei 1995). The mean free time between 
collisions is O(a$-l/( C')''') and so the particle experiences a steady drag for most of 
its flight. Therefore, we assume that the acceleration of the particles due to the drag 
force is of the form 

(6.1) 
f D  b = --(u-u), 
7, 

where fD is the ratio of the drag to the Stokes drag. The drag coefficient is well 
represented for particle Reynolds numbers less than 1000 by (Clift, Grace & Weber 
1978) 

where Re, = 2pflCla/p. 
f D  = 1 + 0.1 5Rei/3, (6.2) 
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The velocity distribution function is given by the Boltzmann equation (2.3) with the 
acceleration of the particle due to the external force, ir, described by (6.1) and (6.2). The 
nonlinearity of the drag in addition to the nonlinearity of the collisional integral makes 
the problem difficult to approximate analytically. If St is sufficiently large and ye 
sufficiently small, then collisions are frequent and they drive the velocity distribution 
toward the Maxwellian. Thus, it is possible to construct an approximate distribution 
function such as (3.6). However, if is large, the velocity distribution is far away 
from the Maxwellian and it is only possible to obtain solutions by computer 
simulation. Firstly, the moment method will be used to study a dilute suspension with 
nonlinear drag by assuming the velocity distribution to be a perturbation from the 
Maxwellian. Then, Monte Carlo simulations will be performed to solve the Boltzmann 
equation exactly and the results will be compared to those of the kinetic theory. For 
St = 10, the perturbation from the Maxwellian is found to be valid for volume 
fractions q5 2 

Following the moment method introduced in $2, taking Y in (2.6) to be p,CC, and 
using the dimensionless quantities defined in (3.13), one obtains the balance equation 
for the stress tensor: 

for which yC < 4. 

The viscous relaxation of the stress tensor due to the nonlinear drag is a nonlinear 
function of ej. Thus, the viscous relaxation of ej must now be calculated using the 
assumed form of the perturbed distribution function, whereas the form of the 
distribution function did not affect this term for linear drag. In order to evaluate 
the viscous relaxation and collisional change of the stress tensor, we assume that the 
velocity distribution in the ignited state can be described by (3.6). Thus, the viscous 
relaxation of the stress tensor is given by 

where .A = aReZi3 T1I3 with Re = 9(p,/p,) St and 

2113 11 
= --T'(g) z 0.245. 

x'I2 36 

Substituting (3.15) for a, ej/at and (6.4) for ( f D  4,) in the balance equation for the 
stress tensor (6.3), the stress tensor and temperature can be obtained 

2(1 +A)---(1 +A)2 (1 +%$?tw+gA)-lT, (6.5a) 
7 2 w  35 St 1 

(6.5b) 
72 w P -p = - (1 +A)+--(1 + A ) 2  (1 +ystw+gA)- lT,  

YY [ 3 5 s  

p,,-p = - (1 +A)---(1 +A)2 (1 +ystw+gA)-'T, [ 1440 35 St 1 ( 6 . 5 ~ )  

(6.5d) 
3 
St 

PXY = --(1 + A )  T, 
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FIGURE 10. The granular temperature of the suspension with nonlinear drag is plotted as a 
function of the volume fraction for St = 10 and p,/p, = 1000. 

and 

Setting h = 0, (6.5) reduces to the results (3.15)-(3.19) for Stokes drag law. No explicit 
analytical solution of (6.5e) for T is possible when h + 0. The moments solution is 
given by the lines in figures 10, 12 and 13. 

To obtain an exact solution of the Boltzmann equation and detailed information on 
the velocity distribution function, the direct-simulation Monte Carlo method, which 
was introduced in 94, is used to simulate the suspension with nonlinear drag. An 
explicit solution for C(t; C,,) from the equation of motion of the particles (6.1) cannot 
be obtained for the nonlinear drag law. Therefore, we adopt a second-order time- 
stepping scheme. On the first time step after a collision, the Euler method is used to 
calculate the velocities of the colliding particles. 

The symbols in figure 10 represent the results of the simulation. For a suspension 
with Stokes drag, we had multiple steady states but no hysteresis was obtained by 
varying the volume fraction. The temperature in the ignited state increased 
monotonically as q5 was decreased, as it does in rapid granular flow. For a suspension 
with nonlinear drag, we obtain both multiple steady states and hysteresis in the regime 
q5cl 6 q5 6 q5c2 as shown in figure 10. When one increases q5 in the quenched state for 
St = 10, the temperature grows and the system ignites at q5 z 1.6 x lop3. As we expect, 
this value is close to that for Stokes drag because the nonlinear drag reduces to Stokes 
drag for the small Reynolds numbers encountered in the quenched suspension. On the 
other hand, as one decreases q5 in the ignited state, a downwardly concave shape of the 
temperature in the ignited state is found. The temperature grows at first in a manner 
similar to the result for Stokes drag. Then it reaches a maximum at about q5 = and 
starts to decrease. Finally, the ignited state cannot be sustained for q5 < q5,.. z 
2.5 x lo-*. As q5 is decreased, the mean free path a$-' becomes large. With a linear drag 
law, the root-mean-square particle velocity can rise sufficiently so that the collision 
time approaches a constant as 4 + 0. In reality, however, the nonlinearity of the drag 
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FIGURE 11. The marginal velocity distribution function f,(C,) of the suspension with nonlinear 
drag for 4 = 4 x St = 10 and p,/p, = 1000. 

becomes increasingly important as the fluctuating velocities increase; this limits the 
growth of T with decreasing $ and eventually leads to quenching. Thus, the divergence 
of granular temperature as $ + O  predicted in granular flow will be eliminated if the 
particles experience a drag force that grows faster than linearly with particle velocity. 

The velocity distribution function can be described by a perturbation from the 
Maxwellian due to shear flow if ~7~ < 1. For an ignited suspension with linear drag, ~7~ 

is about 4.8/St and y7c 4 1 is satisfied if St % 1. According to the simulation, the 
Hermite expansion is a reasonable approximation down to St z 5.  This means that the 
perturbation scheme can be extended up to 717~ - O(1). With the nonlinear drag law, 

The marginal velocity distribution, f,, agrees 
very well with the Maxwellian for $ > 1 x and the predictions of the moment 
method for the temperature are accurate for these volume fractions (see figure 10). 

However, the shear becomes dominant when 717~ > 4. As shown in figure 10, the 
moment method fails to predict the decay of the temperature with decreasing $ for 
$ < y~~ z 37.2 which means 7J7, - O(1) and the 
nonlinear drag term becomes more important than the collision term. Since the shear 
and nonlinear drag terms are dominant for $ < the velocity distribution is 
expected to be far away from the Maxwellian. To understand this behaviour further, 
the marginal velocity distribution f ,  for St = 10 and $ = 4 x lop4 is given as a 
linear-linear plot in figure 11 and compared with the Maxwellian. f ,  has a peaked 
structure with a maximum about six times that of the Maxwellian with the same 
variance. However, unlike the highly peaked velocity distribution in the quenched state 
shown in a logarithm-linear plot in figure 5 ,  there is still a substantial fraction of the 
particles with velocities much larger than ya in this ignited suspension with nonlinear 
drag. 

The ,up/,ug and the normal stress differences for a dilute ignited suspension with 
Stokes drag are given by expressions similar to those for a dilute gas and depend on 
$ only through their dependence on the granular temperature. However, the rheological 
behaviour of a suspension with a nonlinear drag force is unlike a dilute gas and this 

% 4.4 for St = 10 and $ = 1 x 

For St = 10 and q5 = 4 x 
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FIGURE 12. The effective viscosity of the particle phase is plotted as a function of the volume fraction 
for St = 10 and p,/p, = 1000. The line corresponds to the theoretical analysis and the symbols to the 
simulation results. 
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@ 
FIGURE 13. The normal stress differences are plotted as a function of the volume fraction for St = 
10 and p,/pr = 1000. The lines are theoretical predictions and the symbols are the simulation results. 

can be illustrated by the volume fraction dependence of the effective viscosity and 
normal stress differences shown in figures 12 and 13, respectively. As can be seen from 
figure 12, pp/?lf; deviates from 1 significantly as the suspension becomes dilute and 
drops very quickly as q5 + q5cl. The first normal stress difference in figure 13 increases 
as q5 is decreased and reaches a maximum value of about three as q5 approaches q5cl. 
This O( 1) first normal stress difference comes from the streaming mode which controls 
the velocity distribution as @ decreases toward q5cl. On the other hand, the second 
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normal stress difference is still small, O(O.Ol), owing to the slight difference in the 
collisional sources of P,, and p Z z .  A suspension with nonlinear drag behaves more like 
a Newtonian fluid as it becomes more concentrated. When q5 increases, the temperature 
decreases due to frequent collisions. The effects of nonlinearity in (6.2) become smaller, 
and the suspension becomes more Newtonian. However, the suspension behaviour will 
be close to Newtonian only as long as T >> (ya)'. It is this lower limit on the 
temperature that usually causes dense granular flows to be non-Newtonian. 

In dilute granular flows of highly inelastic particles, Richman (1989) obtained 
analytical results for the stress tensor based on an anisotropic Maxwellian distribution 
of particle velocity fluctuation and showed that purely inelastic quenching does not 
take place in simple shear. In order to preclude the divergence of the shear stress as the 
particle volume fraction tends to zero, the effects of particle-wall collisions have been 
considered in studies of pipe flow. Invoking an analogy to the Knudsen free-molecule 
regime, Sinclair & Jackson (1989) replaced the mean free path L in the expression for 
the effective viscosity by min(L, R) where R is the pipe radius. Similarly, Louge et al. 
(1991) adopted the approximation pp/p; = (1 + L/R)-'. However, by introducing 
the effects of nonlinear drag, ,ul?/p:+O as q5+0 even in an unbounded domain, i.e. 
L < R. Either of these mechanisms may limit the growth of ,u:, depending on the 
Stokes number and the size of the domain. 

7. Conclusion 
We have explored the behaviour of a dilute gas-solid suspension subjected to a 

laminar simple shear flow, using numerical simulations and a kinetic theory based on 
a moment expansion. The suspension can exist in two very different states: an ignited 
state, in which the variance of the particle velocity is very large, and a quenched state, 
in which the particle velocity is close to the local fluid velocity. The criterion for the 
Stokes number, volume fraction and initial particle velocity variance leading to each 
of these states has been determined. Over a range of Stokes numbers and volume 
fractions, it is possible to obtain either the quenched or ignited state depending on the 
initial particle velocity variance. 

We have also examined the rheology of the particle phase. In the ignited state, there 
are significant normal stress differences at Stokes numbers comparable to the minimum 
value, StCl z 5 ,  for which the ignited state can be maintained. As the Stokes number 
is increased, the velocity distribution approaches the Maxwellian and the rheology 
becomes more Newtonian. The nonlinearity of the drag when the particle Reynolds 
number is not asymptotically small substantially increases the non-Newtonian 
behaviour. 

Only a small O(St$) fraction of the particles in the quenched suspension have 
velocities that differ substantially from the local fluid velocity. Following a rare shear- 
driven collision, however, a particle may attain an O(yaSt)  difference from the fluid 
velocity by travelling an O(St) distance in the direction of the velocity gradient. The 
momentum transferred by particle translation leads to an O(St'q5') contribution to the 
effective viscosity of the suspension. However, the shear stress is always dominated by 
the viscosity of the gas in the quenched state, for which St3q5 < O(1). 

It is interesting to note that the moment method using a Hermite polynomial 
expansion gives quantitatively accurate results in the ignited regime even quite close to 
the critical Stokes number, StCl z 5 ,  where the non-Newtonian behaviour is quite 
substantial (see figure 1). To show how far from the Maxwellian the distribution can 
be without losing accuracy in the determination of the second moment, we show the 
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FIGURE 14. A comparison of several velocity distributions with the same second moment for St = 5.02 
and g5 = 0.01. The solid line corresponds to the simulation results, the dashed line to the Hermite 
expansion, and the dotted line to the Maxwellian. 

distribution function for cj4 = 0.01 and St = 5.02 in figure 14. The solid line represents 
the distribution determined from numerical simulations, the dashed line the 
approximate distribution assumed in the Hermite expansion, and the dotted line the 
Maxwellian with the same second moment. The assumed distribution does not give the 
correct fourth- and higher-order moments. However, we noted in $ 3  that these 
moments couple weakly to the second moments and so the errors incurred in 
calculating the suspension rheology are small. We found that several other approaches 
to the kinetic theory gave the same or nearly the same results for the rheological 
properties and the critical Stokes number for quenching. These include a moment 
method based on an anisotropic Gaussian velocity distribution, a model based on 
analogy with Maxwell molecules in which the force constant is adjusted artificially to 
reflect the correct temperature dependence of the viscosity for hard spheres (Tsao et al. 
1993), and a BGK equation with a temperature-dependent collision rate which plays 
a similar role. 

The situation we have studied in the present work is idealized in that the suspension 
is dilute, gravitational forces and particle inelasticity are neglected, and the gas flow is 
assumed to be laminar. However, we believe that the qualitative features of our results 
are significant for more general gas-solid flows. In Sangani et al. (1995) the present 
results are extended to higher particle volume fractions by including the effects of 
hydrodynamic particle interactions. Many of the simulation results for the dense 
suspension are explained in terms of an extension of the present theory to include 
collisional stresses and volume-fraction-dependent viscous dissipation. 

The kinetic energy associated with velocity fluctuations may dissipate owing to 
inelastic collisions. For a suspension with nearly elastic particles at a large Stokes 
number, the velocity distribution is close to the Maxwellian. The collisional energy 
dissipation per unit volume can be evaluated and is equal to 12(1-e2)~2T312/7c1/2. 
Thus the criterion for the viscous dissipation due to Stokes drag, 3$T/St, to dominate 
is 36/5 p St2(1 -e2) .  From this criterion, it appears that inelastic effects dominate 
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independent of particle volume fraction at a sufficiently large Stokes number. However, 
this criterion only applies to an ignited suspension with St 9 1 and Re, < 1. The 
viscous drag plays a dominant role in the dynamics of the quenched state and in the 
transition between ignited and quenched states. No quenched state is observed in 
simulations of a dilute granular flow in the absence of drag even if the coefficient of 
restitution is quite small (Campbell 1989). Even in the ignited state, nonlinear drag 
becomes increasingly important as the volume fraction increases and the granular 
temperature grows, so that eventually nonlinear drag dominates as q5 + 0. In Sangani 
et al. (1995), we consider the coupled effects of drag and inelasticity. 

Unfortunately, it is not possible to obtain a dilute gas-solid flow in which gravity can 
be neglected in the presence of the Earth's gravitational force. For a solid-liquid 
system, negligible gravitational effects can be achieved by matching the density of the 
solid and fluid as in the classical experiments of Bagnold (1954). Bagnold obtained 
results indicating that particle inertia and interparticle collisions were dominant for 
St > 22 at the smallest volume fraction that he studied, q5 = 0.13. This criterion lies 
somewhat above our critical Stokes number of 5 .  However, the strong lubrication 
forces and increased form drag in a liquid-solid suspension in addition to the 
inelasticity of the wax particles used in the experiments could easily account for this 
difference. It would be quite straightforward to include inelastic effects in the present 
theory, but the complications of liquid inertia and lubrication pose considerable 
difficulties. 

A microscopic kinetic-theory analysis of gas-solid suspensions can be performed for 
simple flows and simple models of the solid-body particle interactions. A phenom- 
enological continuum description which can be formulated for more complex situations 
is useful for qualitative understanding and for engineering applications (Goddard 
1986). For St 9 1, as shown in (3.29), the constitutive relation for the stress tensor is 
Newtonian. For a finite-St suspension in the absence of particle density variation and 
conduction of granular temperature, (2.7) and (3.7) may be combined to construct an 
' Oldroyd '-like constitutive equation for the stress tensor (Bird, Armstrong & Hassager 
1977) : 

where 1/r  = 2/rv+w(2,2). W is the vorticity tensor andn denotes the deviatoric of a 
tensor. The quadratic terms in the collisional change of the second moment have been 
neglected. The term on the right-hand side shows a temperature (shear-rate)-dependent 
viscosity. The term in parenthesis on the left-hand side of (7.1) is the change of the 
stress tensor as witnessed by an observer translating and rotating with the flow. Note 
that (7.1) must be supplemented by the energy balance 

ps-+$P:D+-p ,  DT 2 T =  0. 

Dt 7, 

From the continuum viewpoint, the multiplicity of steady states obtained in the present 
study may be viewed as a natural consequence of the nonlinearity associated with the 
dependence of the stress P on the shear rate y and the temperature T and it is likely 
that such a multiplicity may be obtained for a wider range of conditions than those 
studied in the present physical model of gas-solid suspensions. However, multiplicity 
of steady states is not present in the standard theory of rapid granular flow and one 
requires an appropriate kinetic model to predict the presence or absence of the 
quenched/ignited transition in any specific physical system. 
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